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1
HIGH FREQUENCY ELECTROPORATION
FOR CANCER THERAPY

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to and is a Divi-
sional of parent application U.S. patent application Ser. No.
13/332,133 filed Dec. 20, 2011, which published as U.S.
Patent Application Publication No. 20120109122 on May 3,
2012. The *133 application relies on and claims priority to
and the benefit of the filing date of U.S. Provisional Patent
Application No. 61/424,872 filed Dec. 20, 2010. The *133
application is a Continuation-In-Part (CIP) application of
U.S. patent application Ser. No. 12/757,901, filed Apr. 9,
2010 (patented as U.S. Pat. No. 8,926,606 on Jan. 6, 2015),
which relies on and claims priority to and the benefit of the
filing date of U.S. Provisional Patent Application No.
61/167,997, filed Apr. 9, 2009, and 61/285,618 filed Dec. 11,
2009. The present application is also related to International
Patent Application No. PCT/US 11/66239, filed Dec. 20,
2011, which published as WO 2012/088149 on Jun. 28,
2012. The entire disclosures of all of these patent applica-
tions are hereby incorporated herein by reference.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under
Contract No. CBET-0933335 awarded by National Science
Foundation. The government has certain rights in the inven-
tion.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to the field of biomedical
engineering and medical treatment of diseases and disorders.
More specifically, embodiments of the invention relate to a
device and method for destroying aberrant cells, including
tumor tissues, using high-frequency, bipolar electrical pulses
having a burst width on the order of microseconds and
duration of single polarity on the microsecond to nanosec-
ond scale.

Description of Related Art

Electroporation based therapies typically involve deliver-
ing multiple, unipolar pulses with a short duration (~100 ps)
through electrodes inserted directly into, or adjacent to, the
target tissue. See Nuccitelli, R., X. Chen, A. G. Pakhomov,
W. H. Baldwin, S. Sheikh, J. L. Pomicter, W. Ren, C.
Osgood, R. J. Swanson, J. F. Kolb, S. J. Beebe, and K. H.
Schoenbach, 4 new puised electric field therapy for mela-
noma disrupts the tumor’s blood supply and causes com-
plete remission without vecurrence. Int J Cancer, 2009.
125(2): p. 438-45; Davalos, R. V., L. M. Mir, and B.
Rubinsky, Tissue ablation with irreversible electroporation.
Ann Biomed Eng, 2005. 33(2): p. 223-31 (“Davalos 2005”);
Payselj, N., V. Preat, and D. Miklavcic, A numerical model
of skin electroporation as a method to enhance gene trans-
fection in skin. 11th Mediterranean Conference on Medical
and Biological Engineering and Computing 2007, Vols 1 and
2,2007. 16(1-2): p. 597-601 (“Payselj 2007”); and Payselj,
N., Z. Bregar, D. Cukjati, D. Batiuskaite, L.. M. Mir, and D.
Miklavcic, The course of tissue permeabilization studied on
a mathematical model of a subcutaneous tumor in small
animals. leee Transactions on Biomedical Engineering,
2005. 52(8): p. 1373-1381.
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The extent of electroporation is attributed to the induced
buildup of charge across the plasma membrane, or trans-
membrane potential (TMP). See Abidor, 1. G., V. B. Arake-
lyan, L. V. Chernomordik, Y. A. Chizmadzhev, V. F. Pas-
tushenko, and M. R. Tarasevich, Electric Breakdown of
Bilayer Lipid-Membranes 0.1. Main Experimental Facts
and Their Qualitative Discussion . Bioelectrochemistry and
Bioenergetics, 1979. 6(1): p. 37-52; Benz, R., F. Beckers,
and U. Zimmermann, Reversible electrical breakdown of
lipid bilayer membranes: a charge-pulse velaxation study. ]
Membr Biol, 1979. 48(2): p. 181-204; Neumann, E. and K.
Rosenheck, Permeability changes induced by electric
impulses in vesicular membranes. ] Membr Biol, 1972.
10(3): p. 279-90; Teissie, J. and T. Y. Tsong, Electric-Field
Induced Transient Pores in Phospholipid-Bilayer Vesicles .
Biochemistry, 1981. 20(6): p. 1548-1554; Zimmermann, U.,
G. Pilwat, and F. Riemann, Dielectric breakdown of cell
membranes . Biophys J, 1974. 14(11): p. 881-99; and
Kinosita, K. and T. Y. Tsong, Formation and Resealing of
Pores of Controlled Sizes in Human Erythrocyte-Membrane
. Nature, 1977. 268(5619): p. 438-441.

Once the TMP reaches a critical voltage, it is thought that
permeabilizing defects, or pores, form in the plasma mem-
brane in attempt to limit further TMP rise. Pore formation
can either be reversible to allow for the introduction of
foreign particles into viable cells, or irreversible to promote
cell death through a loss of homeostasis. Known devices and
methods of performing electroporation clinically involve
several drawbacks, including painful muscle contractions,
unpredictable treatment outcomes, and a high potential for
thermal damage in low passive conductivity tissues.

IRE performed with unipolar pulses causes intense
muscle contractions. Therefore, clinical applications of IRE
require the administration of general anesthesia and neu-
roparalytic agents in order to eliminate the discomfort
caused by muscle contractions seen during each pulse. See
Talele, S. and P. Gaynor, Non-linear time domain model of
electropermeabilization: Response of a single cell to an
arbitrary applied electric field. Journal of Electrostatics,
2007. 65(12): p. 775-784. Receiving paralytic agents is
undesirable for patients, and may deter them from seeking
an electroporation based therapy. Further, in some cases,
even with an adequate neuromuscular blockade, muscle
contractions are still visible (see Payselj 2007), and ques-
tions remain as to what constitutes an appropriate dosage.
Muscle contractions may affect the location of implanted
needle electrodes, which can invalidate treatment planning
algorithms Additionally, in treatments near vital structures,
displacement of the implanted electrodes may cause
unavoidable collateral damage.

The time course of the pulsed electric field and dielectric
properties of the tissue control the TMP development and
the extent to which the transient defects form and reseal
within the membrane. Knowledge of these two components
can be used to predict treatment outcomes. However, pre-
dictions are complicated in heterogeneous tissues, or organs
with multiple types of parenchymal tissue. There is often an
intricate and unknown geometrical arrangement between
tissues of low and high electrical conductivity, and the
conductivity can change in real-time due to the phenomenon
of electroporation, the extent of which is highly unpredict-
able without prior knowledge.

Low conductivity tissues, such as epithelial layers, often
contain a dense packing of cells with reduced extracellular
current pathways. As such, the resistance of the extracellular
space is increased. Additionally, when pulses much longer
than the charging time of the plasma membrane (~1 ps) are
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applied (see T. R., A. T. Esser, Z. Vasilkoski, K. C. Smith,
and J. C. Weaver, Microdosimetry for conventional and
supra-electroporation in cells with organelles. Biochem
Biophys Res Commun, 2006. 341(4): p. 1266-76, “Gowr-
ishankar 2006™), the current is confined to the extracellular
space prior to the onset of electroporation, as shown in
FIGS. 1A-B. As shown, when the pulse duration (t,) is much
less than the plasma membrane time constant (t,,,,), current
flows through both intracellular and extracellular spaces
(FIG. 1A). In the case that t, is much greater than <,
current flow is restricted to the narrower extracellular spaces
(FIG. 1B). Consequently, there is a large voltage drop across
tissues with low conductivity, which increases the potential
for deleterious Joule heating effects, such as thermal dam-
age.

SUMMARY OF THE INVENTION

The present invention provides advancements over con-
ventional tissue electroporation by utilizing high-frequency,
bipolar pulses. Pulsing protocols according to embodiments
of the invention involve bursts of bipolar pulses with a burst
width on the order of microseconds and duration of single
polarity on the microsecond to nanosecond scale, as shown
in FIG. 2. The total burst width of the high-frequency pulses
(~100-1000 ns duration of single polarity) is on the order of
hundreds of microseconds, the time delay in between bursts
is on the order of seconds, and the total number of bursts can
be adjusted.

It is possible for the electric field to penetrate tissue
heterogeneities when high-frequency electric fields are
employed, because capacitive coupling is enhanced allow-
ing current to flow through both extracellular and intracel-
Iular spaces. See Gowrishankar, T. R. and J. C. Weaver, An
approach to electrical modeling of single and multiple cells.
Proceedings of the National Academy of Sciences of the
United States of America, 2003. 100(6): p. 3203-3208; and
Ivorra, A., ed. Tissue Electroporation as a Bioelectric Phe-
nomenon: Basic Concepts . Irreversible Electroporation, ed.
B. Rubinsky. 2010, Springer Berlin Heidelberg. 23-61. In
this case, all cells present in the organ, regardless of their
packing and morphology, experience a macroscopically
homogeneous electric field distribution. See Esser, A. T., K.
C. Smith, T. R. Gowrishankar, and J. C. Weaver, Towards
Solid Tumor Treatment by Nanosecond Pulsed Electric
Fields. Technology in Cancer Research & Treatment, 2009.
8(4): p. 289-306. This results in more predictable and
uniform treatment outcomes without the electric energy
being preferentially deposited into regions of tissue with a
lower passive conductivity. As a result, Joule heating is also
more uniformly distributed throughout the tissue, which
mitigates the potential for thermal damage in regions with a
low passive conductivity.

Enhanced capacitive coupling also limits the change in
tissue electrical conductivity due to electroporation. There-
fore, prior knowledge of how the conductivity of a tissue is
modulated in response to electroporation is not required to
accurately predict the electric field distribution. As a result,
simplified algorithms can be implemented for treatment
planning.

High-frequency, bipolar waveforms are also included in
embodiments of the invention for mitigating or completely
eliminating muscle contractions during electroporation
based therapies. It is well known in the field of functional
electrical stimulation that the threshold for nerve stimulation
increases as the center frequency of bipolar waveforms
increases. Further, muscle twitch forces are reduced as

10

15

20

25

30

35

40

45

50

55

60

65

4

frequency increases. The present invention demonstrates
that a range of frequencies exist where non-thermal tissue
ablation can be achieved without causing nerve excitation or
muscle contraction. In the context of this specification, it is
noted that the term ablation is used to indicate destruction of
cells, but not necessarily destruction of the supportive
stroma.

Clinically, this translates to performing IRE without the
requirement of paralytic agents (or a reduction in the amount
of paralytic agents administered) in all procedures, and
without the further requirement of general anesthesia in
minimally invasive procedures. Additionally, other compli-
cations caused by IRE with unipolar electric pulses are
alleviated, including electrode displacement and pain asso-
ciated with intense muscle contractions.

Examples of heterogeneous systems include, but are not
limited to, tumors surrounded by or containing any type of
epithelial layer, such as a skin fold geometry, or systems
comprised of multiple tissue types including, brain, bone,
breast, pancreatic, kidney, or lung. In this specification, an
epithelial layer is defined as a dense packing of cells that
restrict the flow of materials (e.g., electrical current) result-
ing in a low passive electrical conductivity.

The present invention applies to all electroporation based
therapies. Recently, electroporation has been utilized in vivo
as a means to destroy cancer cells within tissues in both
reversible and irreversible modalities. Reversible electropo-
ration is being studied to facilitate the delivery of anticancer
drugs and DNA into cancer cells through the plasma mem-
brane in the form of electrochemotherapy (ECT) and elec-
trogenetherapy (EGT), respectively. Irreversible electropo-
ration (IRE) promotes cell death resulting in the
development of a tissue lesion. It is an independent means
to ablate substantial volumes of targeted tissue without the
use of harmful adjuvant chemicals if used prior to the onset
of thermal injury. See Davalos 2005. By not relying on
thermal processes, IRE has been shown to spare the extra-
cellular matrix and architecture of nerves and blood vessels.

More specifically, the present invention provides new
devices and methods for the treatment of diseases and
disorders, such as hemic and solid neoplasias, which
improves conventional clinical practice associated with
electroporating target tissues.

Included in embodiments of the invention is a method of
treating a subject suffering from a neoplasia comprising:
implanting at least one device for emitting electric pulses
into or adjacent a neoplastic site within the body of a subject;
and delivering one or more electric pulse to the neoplastic
site, such that amplitude and duration of the pulse are in the
range of about 1500 V/cm to 2500 V/em for 10 ps or less
which is capable of inducing irreversible electroporation.
Methods of the invention also include non-invasive methods
of treating a subject comprising non-invasively placing at
least one device for emitting electric pulses around a region
of the body containing a neoplastic site within; and deliv-
ering one or more electric pulse, such that amplitude and
duration of the pulse are in the range of about 1500 V/cm to
2500 V/em for 10 ps or less which is capable of inducing
irreversible electroporation.

According to embodiments of the invention, such meth-
ods can employ multiple pulses administered in a pulse burst
having a duration of less than 10 ms.

Such methods can employ one or more pulses or a
plurality of pulses in a pulsing protocol, wherein the ampli-
tude of the pulse is in the range of about 500 V/cm to 1500
V/em. Amplitude in the context of this specification refers to



US 10,292,755 B2

5

the voltage-distance ratio of a pulse, such as for 1500 V/em
the voltage is 750V over a distance of 0.5 cm.

Such methods can have a pulse duration in the range of
about 2 MHz (250 ns) to about 500 kHz (1 ps). For example,
the pulse duration can be about 1 MHz (500 ns). In preferred
embodiments, the duration of each pulse is in the range of
about 100 to 10,000 ns.

Any number of probes or electrodes can be used inva-
sively, semi-invasively, or non-invasively according to
embodiment of the invention. In preferred embodiments,
two or more electrically conductive regions are used within
a single device for emitting the electrical pulses. Similarly,
in any of the methods according to the invention, two or
more devices can be used to deliver multiple electric pulses
at different positions within, on, or near a body.

Custom treatment area shapes can be created through
varying electrode activation patterns in combination with
any of the embodiments of the invention.

The methods can also employ delivery of a bipolar burst
of pulses. In embodiments, a bipolar burst of pulses can be
delivered with multiple pulses in a single phase before a
polarity switch. Even further, total burst width of any pulse
protocol according to the invention can be between 1 ps and
10,000 ps. In preferred embodiments, the methods can have
a duration of single polarity within a bipolar burst of
between about 100 ns and 100,000 ns.

The shape of the electric pulses delivered using methods
of the invention can be square, ramp, sinusoidal, exponen-
tial, or trapezoidal.

In preferred embodiments, two or more electric pulse
bursts can be administered with a delay between bursts. In
preferred embodiments, a delay between bursts can be on the
order of seconds. For example, in bipolar protocols a
selected positive voltage (+V) can be applied for a selected
period of time (e.g., 50 ps), then a zero voltage applied for
a selected period of time (e.g., 75 ps), then a negative
voltage (-V) can be applied (e.g., 50 us). The voltage can be
applied in any number of individual pulses, as a pulse or
pulse burst.

Also included in embodiments of the invention is a
method of delivering electric pulses such that amplitude and
duration of single polarity are selected to be capable of
administering electroporation to electrically excitable tissue
without stimulation of the tissue.

Further included is a method of delivering electric pulses
such that amplitude and duration of single polarity are
selected to be capable of administering electroporation to
electrically excitable tissue with reduced stimulation of the
tissue as compared with higher amplitude and longer dura-
tion pulse protocols. Preferably tissue stimulation that is
avoided or prevented refers to a muscle contraction.

In embodiments, the neoplastic site, region of the body, or
electrically excitable tissue can be nerve tissue, muscle, or
an organ containing nerves and/or muscle tissue.

Any embodiment of the invention can employ applying
electric pulses having an amplitude and duration in the range
of about 1500 V/cm to 2500 V/cm for 10 ms or less which
is capable of inducing irreversible electroporation.

Method embodiments of the invention can be used to
build up the transmembrane potential of a tissue to a critical
value (~1V) by delivering trains of less than 1 us bipolar
pulses. For example, multiple monopolar pulses can be
delivered at a pulse duration of about 5 MHz prior to a
polarity switch, then delivered at a pulse duration of about
5 MHz after polarity switch.

Methods of the invention may or may not employ admin-
istering of a drug designed to induce a neural blockade. The
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methods can include administration of general, local, or no
anesthesia for treatment of tissues with electroporation
based therapies. In preferred embodiments, no neural block-
ade is required for treatment of tissues with electroporation
based therapies, or lower dosages of a neural blockade can
be used in embodiments of the invention to achieve the same
results as using higher doses with lower frequency pulsing
protocols.

The pulses of any method of the invention can be deliv-
ered on a short enough timescale to flow through epithelial
cells but are long enough to induce electroporation in
underlying cells. In specific embodiments, a frequency of
500 kHz or 1 MHz or 250 kHz is used to treat underlying fat
cells in a layer of fat disposed under the epidermis.

Methods according to the invention can be modified to
provide for administering non-thermal IRE, IRE, and/or
reversible electroporation.

Treatment planning according to embodiments of the
invention can result in more predictable outcomes in homo-
geneous and heterogeneous tissues than compared with
lower frequency pulsing protocols.

Any one or more of the methods, devices, or systems, or
parts thereof, can be combined with other methods, devices,
systems, or parts thereof mentioned in this specification to
obtain additional embodiments within the scope of this
invention.

Devices and systems for implementing any one or more of
the above mentioned methods are also within the scope of
the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate certain aspects of
some of the embodiments of the present invention, and
should not be used to limit the invention. Together with the
written description the drawings serve to explain certain
principles of the invention.

FIGS. 1A-B are schematic illustrations showing electrical
current pathways through epithelial layers and bulk tissue
prior to the onset of electroporation.

FIG. 2 is a schematic diagram of a representative pulsing
protocol for electroporation based therapy according to
embodiments of the present invention.

FIGS. 3A-D are graphs showing dielectric properties (T
and €,) as a function of frequency for skin and fat.

FIGS. 4A-B are graphs showing respectively 2 MHz AC
burst with a width of 4 ps, and a DC pulse with a duration
of 4 ps of equal amplitude (FIG. 4A); and magnitude
spectrum of the AC burst (thick) and DC pulse (thin) (FIG.
4B).

FIG. 5 is a graph showing frequency (f) response of the
TMP at the cell pole (6=0) for rectangular bipolar pulses (-)
and sinusoidal waveforms (- -). The box illustrates the
frequency window implemented in the FEM.

FIG. 6 is a graph of the strength-duration curve for
unipolar electric pulses expressed as electric field strength in
tissue. Adapted from Rogers, W. R., J. H. Merritt, J. A.
Comeaux, C. T. Kuhnel, D. F. Moreland, D. G. Teltschik, J.
H. Lucas, and M. R. Murphy, Strength-duration curve for an
electrically excitable tissue extended down to near 1nano-
second. leee Transactions on Plasma Science, 2004. 32(4):
p. 1587-1599 (“Reilly 2004™).

FIG. 7 is a strength-duration graph comparing unipolar to
bipolar rectangular and sine waveforms expressed as phase
charge and current. Adapted from Reilly 2004.
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FIGS. 8A-B are schematic diagrams showing meshed
geometry of the FEM with boundary settings (FIG. 8A) and
the geometry with dimensions (FIG. 8B).

FIGS. 9A-D are schematic diagrams showing the electric
field, norm (V/cm) contours predicted by the FEM at the end
of'a 2 us burst with an amplitude of 2600 V and a frequency
of 250 kHz (FIG. 9A), 500 kHz (FIG. 9B), 1 MHz (FIG. 9C),
and 2 MHz (FIG. 9D).

FIGS. 10A-B are graphs showing temperature changes
predicted by the FEM at the center of the skin (FIG. 10A)
and fat (FIG. 10B) for various frequencies of 250 kHz (- -),
S00kHz (---),1 MHz (... ), and 2 MHz (-).

FIGS. 11A-B are graphs of TMP predicted by the FEM at
the center of the skin (FIG. 11A) and fat (FIG. 11B) for
frequencies of 250 kHz (- -), 500 kHz ( - - - ), 1 MHz
(...),and 2 MHz (-).

FIG. 12 is a diagram of a system for implementing
high-frequency, bipolar pulses for tissue electroporation.

FIGS. 13A-B are graphs showing output of the arbitrary
function generator prior to signal amplification by the high
voltage MOSFET positive and negative polarity switches.

FIGS. 14A-B are micrographs showing in vitro experi-
mental results on electroporation with high-frequency bipo-
lar, pulses using a trypan blue dye exclusion assay.

FIG. 15A-C are waveforms of IRE with unipolar pulses
and high-frequency IRE with the corresponding TMP devel-
opment across the plasma membrane (®,,,) for a 1500 V/em
unipolar pulse (FIG. 15A) and a 1500 V/cm bipolar burst
without a delay (FIG. 15B) and with a delay (FIG. 15C).

FIG. 16 is a graph comparing time above the critical
threshold (®,,,) for IRE at various center frequencies.

FIGS. 17A-C are waveforms of IRE with unipolar pulses
and high-frequency IRE with the corresponding TMP devel-
opment across the plasma membrane (®,,,) for a 1500 V/em
unipolar pulse (FIG. 17A), a 1500 V/em bipolar burst
without a delay and with a shortened negative phase (FIG.
17B), and a 1500 V/cm bipolar burst with a delay and with
a shortened, lower amplitude negative phase (FIG. 17C).

FIG. 18 is a chart showing an exemplary output from an
in vivo treatment of the brain with high-frequency, bipolar
pulses, where the snapshot is taken within a single burst.

FIGS. 19A-B are photographs showing histological sec-
tions of liver tissue treated with high-frequency IRE (FIG.
19A) and conventional IRE with unipolar (FIG. 19B), with
cross sections of tissue taken between the electrodes (scale
bar=250 um).

FIGS. 20A-D are micrographs showing the histopathol-
ogy of rat brain tissue for untreated rats (FIGS. 20A-B) and
treated with high-frequency, bipolar pulses at 200 V/250
kHz (FIG. 20C-D, Rat #2, right hemisphere), with the
delineation between treated and untreated tissue shown in
FIG. 20C (black, dotted line).

FIGS. 21A-F are MRIs of lesions in rat brain appearing as
focal hyper-intense regions (white) compared to adjacent
untreated cerebrocortical tissue (gray). FIGS. 21A-C were
obtained from Rat #3, in which both the left and right
cerebral hemispheres were treated with high-frequency
waveforms at 300 V/250 kHz and 400 V/250 kHz, respec-
tively. FIGS. D-F were obtained from Rat #4, which under-
went high-frequency, bipolar pulses in the right cerebrum at
400 V/500 kHz, and conventional IRE with unipolar pulses
at 50 V in the left cerebrum.

FIGS. 22A-D are data recordings of acceleration (a)
versus time during treatments with unipolar IRE pulses and
high-frequency IRE pulses.

FIG. 23 is a chart showing peak acceleration (a) during
pulsing protocols averaged over the first 90 pulses.
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FIGS. 24A-C are schematic diagrams showing electric
field, norm (V/cm) contours predicted by the FEM during a
1000 V amplitude burst with a center frequency of 1 kHz
(FIG. 24A) and 1 MHz (FIG. 24B). In FIG. 24C, the
homogeneous solution is shown for a constant pulse.

DETAILED DESCRIPTION OF VARIOUS
EMBODIMENTS OF THE INVENTION

Reference will now be made in detail to various exem-
plary embodiments of the invention. It is to be understood
that the following discussion of exemplary embodiments is
not intended as a limitation on the invention. Rather, the
following discussion is provided to give the reader a more
detailed understanding of certain aspects and features of the
invention.

Despite being a well-known technique, there is significant
controversy about the mechanisms governing electropora-
tion. Weaver, J. C., Electroporation of cells and tissues.
IEEE Transactions on Plasma Science, 2000. 28(1): p.
24-33. Even though the biophysical phenomenon at the
molecular level is not known, the hypothesis is that in the
presence of an externally applied electric field, the lipid
bilayer in cellular membranes rearranges to create water-
filled structures. These structures (or pores) provide a path-
way for ions and molecules through the membranes that
normally are impermeable. The dynamics of membrane
poration is considered a four-step process: pore induction,
expansion, stabilization and resealing. Weaver, J. C. and Y.
A. Chizmadzhev, Theory of electroporation: a review. Bio-
electrochem. Bioenerg., 1996. 41: p. 135-60. Initial thermal
fluctuations are responsible for the presence of hydrophobic
pores. There exists a critical radius where it is more ener-
getically favorable for a hydrophobic pore to transition to a
hydrophilic pore. In addition, increasing the TMP reduces
this critical radius and increases the stability of a hydrophilic
pore. Kinosita, K., Jr., S. Kawato, and A. lkegami, 4 theory
of fluorescence polarization decay in membranes. Biophys J,
1977. 20(3): p. 289-305. When the pore reaches this meta-
stable state, it becomes permeable to small molecules. The
presence of the induced transmembrane potential lowers the
energy required for the pore’s existence. Freeman, S. A., M.
A. Wang, and J. C. Weaver, Theory of Electroporation of
Planar Bilayer-Membranes—Predictions of the Aqueous
Area, Change in Capacitance, and Pore-Pore Separation.
Biophysical Journal, 1994. 67(1): p. 42-56. When the elec-
tric field has been turned off, the membrane starts to return
to its normal membrane potential and resealing of the pores
takes place.

The dielectric permittivity and conductivity of a given
tissue are typically functions of frequency. A comparison of
the dielectric properties between skin and fat is presented in
Table 1. This data was obtained by interpolating the results
from Gabriel et al. (FIGS. 3A-D). Gabriel, S., R. W. Lau, and
C. Gabriel, The dielectric properties of biological tissues
0.2. Measurements in the frequency range 10Hz to 20GHz
. Physics in Medicine and Biology, 1996.41(11): p. 2251-
2269. At varying frequencies, different mechanisms of
charge transfer contribute differently to the permittivity and
conductivity. Stoy, R. D., K. R. Foster, and H. P. Schwan,
Dielectric properties of mammalian tissues from 0.1to
100MHz: a summary of recent data . Phys Med Biol, 1982.
27(4): p. 501-13.
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Conductivity of skin and fat as a function of frequency.

Tissue
Frequency Waveform Property Skin Fat

250 kHz o [S/m] 0.00216 0.0263
€, 888 47

500 kHz o [S/m] 0.00485 0.0265
€. 851 33

1 MHz o [S/m] 0.0119 0.0267
€ 792 25

2 MHz o [S/m] 0.029  0.0270
€. 700 20

In general, as the frequency increases, so does the con-
ductivity of the skin and fat. According to Table 1, the
difference in conductivity between skin (s) and fat (f) is
reduced as the frequency increases from 250 kHz to 2 MHz
(o/o~1).

Therefore, if electroporation is used to treat a tumor
within a heterogeneous skin fold geometry, the electric field
distribution in the surrounding skin and fat would be more
homogenous if high-frequency waveforms are utilized.
Oftentimes tissue impedance has patient-to-patient variabil-
ity and the impedance distribution and any impedance
changes may be difficult to determine for a particular patient.
This point is emphasized further in EXAMPLE 1. Because
rectangular waveforms are comprised of components with
various frequencies and amplitudes, tissue properties at
frequencies associated with the center frequency, defined as
the inverse of twice the duration of single polarity, are
chosen when studying AC bursts. This is illustrated in FIGS.
4A-B. By taking the absolute value of the Fourier Transform
of'an AC burst and a DC pulse, the magnitude spectrum can
be obtained. While the DC pulse transmits a majority of its
power at low frequencies (0 Hz), the AC burst has a
characteristic peak at the center frequency (2 MHz in this
case).

The benefits of bipolar pulses have been studied for
electroporation applications at the single-cell level. Theo-
retically, Talele et al. have shown that asymmetrical elec-
troporation due to the resting TMP (~0.1 V) (see Gowris-
hankar 2006) of cells seen when unipolar pulses are
delivered (see Chang, D. C., Cell Poration and Cell-Fusion
Using an Oscillating FElectric-Field. Biophysical Journal,
1989. 56(4): p. 641-652, “Chang 1989”; and Tekle, E., R. D.
Astumian, and P. B. Chock, Electroporation by Using Bipo-
lar Oscillating Electric - Field—an Improved Method for
DNA Transfection of Nih 3t3Cells . Proceedings of the
National Academy of Sciences of the United States of
America, 1991. 88(10): p. 4230-4234, “Tekle 1991”) can be
alleviated by switching to bipolar pulses. Talele, S. and P.
Gaynor, Non-linear time domain model of electropermeabi-
lization: Response of a single cell to an arbitrary applied
electric field. Journal of Electrostatics, 2007. 65(12): p.
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775-784. Experimentally, this leads to increased efficiency
of macromolecule uptake through the membrane. Chang
1989; and Tekle 1991. Depending on the extracellular con-
ductivity, bipolar pulses with a frequency of 1 MHz (i.e. 500
ns duration of single polarity) can also lessen the depen-
dence of electroporation on cell size, allowing more cells to
be electroporated. Talele, S. and P. Gaynor, Non-linear time
domain model of electropermeabilization: Effect of extra-
cellular conductivity and applied electric field parameters.
Journal of Electrostatics, 2008. 66(5-6): p. 328-334; and
Talele, S., P. Gaynor, M. J. Cree, and J. van Ekeran,
Modelling single cell electroporation with bipolar pulse
parameters and dynamic pore radii. Journal of Electrostat-
ics, 2010. 68(3): p. 261-274. In general, pore formation
increases as long as the TMP is sustained above a critical
threshold (~1 V). Gowrishankar 2006. Bipolar pulses
require higher field strengths to induce a given TMP as
compared to a unipolar pulse of equivalent duration. This is
accentuated when the frequency of the bipolar pulses is
increased, because the time interval above the critical TMP
is reduced. Talele, S., P. Gaynor, M. J. Cree, and J. van
Ekeran, Modelling single cell electroporation with bipolar
pulse parameters and dynamic pore radii. Journal of Elec-
trostatics, 2010.68(3): p. 261-274. Kotnik et al. have
explored the benefits of bipolar pulse trains at significantly
lower frequencies, up to 1 kHz (i.e. 500 ps duration of single
polarity). At lower frequencies, theoretical results show that
the pore formation symmetry can also be normalized with
bipolar pulses. Kotnik, T., L. M. Mir, K. Flisar, M. Puc, and
D. Miklavcic, Cell membrane electropermeabilization by
symmetrical bipolar rectangular pulses. Part I. Increased
efficiency of permeabilization. Bioelectrochemistry, 2001.
54(1): p. 83-90, “Kotnik 1 2001.” Experimentally, bipolar
pulses reduce electrolytic contamination (see Kotnik, T., D.
Miklavcic, and L. M. Mir, Cell membrane electropermeabi-
lization by symmetrical bipolar rectangular pulses. Part II.
Reduced electrolytic contamination. Bioelectrochemistry,
2001. 54(1): p. 91-5) and the required field strength for
reversible electroporation, while the field strength required
for IRE remains unchanged. Kotnik I 2001. The authors
attribute this to the fact that when the duration of single



US 10,292,755 B2

11

polarity is much longer than the plasma membrane charging
time, permeabilized area differences on the membrane
between unipolar and bipolar pulses decreases as pulse
amplitude increases.

Bipolar pulse delivery has been studied in vivo for
reversible applications of electroporation using center fre-
quencies that are two orders of magnitude lower than that
used in embodiments of the present invention. Daskalov et
al. have demonstrated that pulses delivered at 1 kHz are
associated with less patient pain in during electrochemo-
therapy. Daskalov, 1., N. Mudrov, and E. Peycheva, Explor-
ing new instrumentation parameters for electrochemo-
therapy—Attacking tumors with bursts of biphasic pulses
instead of single pulses. IEEE Eng Med Biol Mag, 1999.
18(1): p. 62-66. Similarly, Nikolova et al. has recently
demonstrated the same findings during electrochemotherapy
with a Bacillus Calmette-Guerin vaccine. Nikolova, B., 1.
Tsoneva, and E. Peycheva, Treatment of Melanoma by
Electroporation of Bacillus Calmette-Guerin. Biotechnol-
ogy & Biotechnological Equipment, 2011.25(3): p. 2522-
2524. Both authors attribute the reduction in patient pain due
to the associated reduction in muscle contractions seen with
bipolar pulses.

There is a balance between employing pulses that are
delivered at a high enough frequency to reduce the conduc-
tivity mismatch between different tissues but have a duration
of single polarity long enough to induce electroporation of
cells comprising the tissues. As mentioned, electrical current
associated with pulses longer than -1 ps is confined to
extracellular spaces prior to the onset of electroporation.
Ivorra, A., ed. Tissue Electroporation as a Bioelectric Phe-
nomenon: Basic Concepts. Irreversible Electroporation, ed.
B. Rubinsky. 2010, Springer Berlin Heidelberg. 23-61; and
Esser, A. T., K. C. Smith, T. R. Gowrishankar, and J. C.
Weaver, Towards solid tumor treatment by irreversible elec-
troporation: intrinsic redistribution of fields and currents in
tissue. Technol Cancer Res Treat, 2007. 6(4): p. 261-74. This
can be attributed to the migration of charges towards bio-
logical membranes following the application of an external
electric field. The time required for a membrane to become
charged to 63% of its steady state value is defined as the
charging time constant of the membrane. Displacement
currents across the plasma membrane allow organelles to be
exposed to fields during the time that it takes the plasma
membrane to reach steady state. Esser, A. T., K. C. Smith, T.
R. Gowrishankar, and J. C. Weaver, Towards Solid Tumor
Treatment by Nanosecond Pulsed Electric Fields. Technol-
ogy in Cancer Research & Treatment, 2009. 8(4): p. 289-
306. Once steady state is achieved, the counter-field devel-
oped along the plasma membrane due to the accumulation of
charges is significant enough to shield the field from entering
the cell, and current is directed through extracellular spaces.
Only after permeabilization of the membrane does ionic
conduction allow the field to re-enter the cell. Kolb, J. F., S.
Kono, and K. H. Schoenbach, Nanosecond pulsed electric
field generators for the study of subcellular effects. Bioelec-
tromagnetics, 2006. 27(3): p. 172-187. If extracellular cur-
rent pathways between cells are reduced, as in layers of
epithelial cells connected by tight or gap junctions (see
Jones, D. M., R. H. Smallwood, D. R. Hose, B. H. Brown,
and D. C. Walker, Modelling of epithelial tissue impedance
measured using three different designs of probe . Physiologi-
cal Measurement, 2003. 24(2): p. 605-623), the field is
highly concentrated across the layer, and the extent of
electroporation in underlying cells is reduced. This problem
is alleviated when the duration of single polarity approaches
the membrane time constant.
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By treating cells as a series of spherical, dielectric shells
containing and surrounded by a conductive medium, the
analytical solution for induced TMP across the plasma
membrane (AD) can be obtained according to the law of
total current (see Yao, C. G., D. B. Mo, C. X. Li, C. X. Sun,
and Y. Mi, Study of transmembrane potentials of inner and
outer membranes induced by pulsed-electric-field model and
simulation. IEEE Trans Plasma Sci, 2007. 35(5): p. 1541-
1549, “Yao 20077):

JE €8]
v -(Eoer +0'E] =AV-E=0

@

A a
X _o'+£0£,a—[

where A is the admittivity operator and the subscript k
denotes cellular regions including the nucleoplasm (n),
nuclear envelop (ne), cytoplasm (c), plasma membrane
(pm), and extracellular space (e). Transforming (2), (5), and
(6) into the frequency domain (see Yao 2007):

E=-V&(s) 3

AV-E(s)=0 4

A(S)=0+EE s &)

where s=jw=j2xtf, and applying the appropriate boundary
conditions of potential continuity and normal vector conti-
nuity of current density at the interface between the different
regions yields the solution for TMP (see Yao 2007):

ADS)TF (Ao A

\prm >

A,)E(s)cos © (6)

where 0 represents the polar angle at the cell center
between the electric field and the point of interest along the
membrane. TMP is defined as the potential directly outside
the membrane minus the inside. The natural, resting com-
ponent of the plasma membrane TMP was ignored in all
simulations, because it is typically an order of magnitude
less than the induced TMP. See Gowrishankar 2006. Further,
the TMP across the nuclear envelope never reached a
permeabilizing threshold with the chosen pulsing protocols,
and reference to TMP from this point forward refers only to
the plasma membrane. As shown in Table 2, the term F(A,)
represents a transfer function of the TMP that reflects the
geometric and dielectric properties of the cellular regions as
a function of the admittivity. See Hu, Q., S. Viswanadham,
R. P. Joshi, K. H. Schoenbach, S. J. Beebe, and P. F.
Blackmore, Simulations of transient membrane behavior in
cells subjected to a high-intensity ultrashort electric pulse.
Physical Review E, 2005. 71(3). Dielectric properties at the
cellular level are assumed to be frequency independent,
which is valid for predicting TMP up to around 100 MHz.
Kotnik, T. and D. Miklavcic, Theoretical evaluation of the
distributed power dissipation in biological cells exposed to
electric fields. Bioelectromagnetics, 2000. 21(5): p. 385-
394.

TABLE 2
Dielectric properties of various cellular regions.
Geometry o [S/m] €, Dimensions [m]
Extracellular Space 0.6 80.0 —
Plasma Membrane 5.3 x107¢ 7.0 7.0 x 107 (thickness)
Cytoplasm 0.13 60.0 5.0 x 1076 (radius)
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TABLE 2-continued

Dielectric properties of various cellular regions.

Geometry o [S/m] €, Dimensions [m]
Nuclear Envelope 4.3 x 1073 22.8  40.0 x 107 (thickness)
Nucleoplasm 0.18 120.0 2.5 x 1079 (radius)

The exact formulation for F(A,) is lengthy and can be
found in (see Kotnik, T. and D. Miklavcic, Theoretical
evaluation of voltage inducement on internal membranes of
biological cells exposed to electric fields. Biophysical Jour-
nal, 2006. 90(2): p. 480-491), but is not included here for
brevity. The term E(s) represents the Laplace transform of
the pulsed electric field as a function of time.

Using the analytical model, the frequency dependence of
the induced TMP can be investigated for both rectangular
and sinusoidal electric fields with identical maximum ampli-
tude. By substituting the transient electric fields into (6) the
results of a parametric study on TMP for frequencies span-
ning from 62.5 kHz to 16 MHz are shown in FIG. 5. The
maximum amplitude of the sinusoidal and bipolar rectan-
gular electric fields was 2000 V/em (peak). For this applied
field and the given geometric and dielectric properties of the
modeled cell, the TMP never exceeds 1.46 V. Additionally,
the time constant of the plasma membrane is 345 ns. All
measurement were taken at the cell pole (6=0) to depict the
maximum achieved TMP after the system reached a steady
oscillatory state. From the curve, as the frequency increases,
the magnitude of the TMP is reduced. For the sinusoidal
waveform, the reduction is evident at lower frequencies
compared to the rectangular waveform. This has to do with
the fact that the rectangular waveform maintains its maxi-
mum amplitude for a longer period of time than the sinu-
soidal waveform. It is not until the frequency of the rectan-
gular waveform surpasses 250 kHz that a dramatic decrease
in TMP occurs. For this reason, only rectangular pulses in a
frequency window of 250 kHz to 2 MHz are best suited for
electroporation with high-frequency, bipolar pulses.

Based on the analytical model for TMP presented above,
the time constant of the plasma membrane for a constant
field (2000 V/cm) is 345 ns. The time constant of 345 ns falls
between the 2 MHz (250 ns pulse duration) and 1 MHz (500
ns pulse duration) bursts. Further, the 500 kHz burst (1 ps
pulse duration) is close to the time it takes the TMP to reach
steady state. As frequency is increased, the dielectric prop-
erties different tissues become more macroscopically homo-
geneous, but above 2 MHz, the pulse duration is not
adequate for the cell to charge and induce electroporation.
According to in vitro experiments that utilize bipolar rect-
angular pulses, the typical burst width required to induce
either reversible electroporation or IRE increases with the
frequency of the applied field. For EGT, a 60 kHz bipolar
square with a burst width of 400 ps and an amplitude of 1600
V/em has a six times greater transfection efficiency than a 1
MHz bipolar square wave with equal amplitude and width.
Tekle, E., R. D. Astumian, and P. B. Chock, Electroporation
by Using Bipolar Oscillating Electric-Field—an Improved
Method for DNA Transfection of Nik 3t3 Cells. Proceedings
of the National Academy of Sciences of the United States of
America, 1991. 88(10): p. 4230-4234 (Telke 1991). In terms
of IRE, a 60 kHz bipolar square with a burst width of 400
pus and an amplitude of 4000 V/cm results in 19% cell
viability. Telke 1991. These results were obtained when a
single burst was delivered to the sample. The inventors,
however, appear to be the first in providing data on high-
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frequency electroporation with rectangular pulses that
implemented multiple bursts. Similar to how multiple uni-
polar pulses are typically delivered in ECT, EGT, or IRE
protocols to enhance the desired outcome (see Belehradek,
J., S. Orlowski, L H Ramirez, G. Pron, B. Poddevin, and L.
M. Mir, Electropermeabilization of Cells in Tissues
Assessed by the Qualitative and Quantitative Electroloading
of Bleomycin . Biochimica Et Biophysica Acta-Biomem-
branes, 1994. 1190(1): p. 155-163; and Garcia, P. A, J. H.
Rossmeisl, R. E. Neal, T. L. Ellis, J. D. Olson, N. Henao-
Guerrero, J. Robertson, and R. V. Davalos, Intracranial
Nonthermal Irreversible Electroporation: In Vivo Analysis.
Journal of Membrane Biology, 2010. 236(1): p. 127-136)
multiple bipolar bursts would likely produce similar trends.
Data is also available for burst sinusoidal waveforms in the
frequency range of 2 kHz to 50 MHz (see Jordan, D. W., R.
M. Gilgenbach, M. D. Uhler, L. H. Gates, and Y. Y. Lau,
Effect of pulsed, high-power radiofrequency radiation on
electroporation of mammalian cells. leee Transactions on
Plasma Science, 2004. 32(4): p. 1573-1578; and Katsuki, S.,
N. Nomura, H. Koga, H. Akiyama, 1. Uchida, and S. 1. Abe,
Biological effects of narrow band pulsed electric fields. leee
Transactions on Dielectrics and Electrical Insulation, 2007.
14(3): p. 663-668), but the results are inconclusive, and
sinusoidal waveforms are less efficient than rectangular
bipolar pulses for inducing electroporation. Kotnik, T., G.
Pucihar, M. Rebersek, D. Miklavcic, and L. M. Mir, Role of
pulse shape in cell membrane electropermeabilization. Bio-
chimica Et Biophysica Acta-Biomembranes, 2003. 1614(2):
p. 193-200.

There is a narrow window of pulse parameters where ECT
and EGT have proven to be effective without reducing cell
viability by IRE. For ECT, the field for inducing optimal
reversible electroporation conditions is between 300 and 500
V/em in tumors, when eight square-wave pulses 100 us in
duration are delivered at a frequency of 1 Hz. Mir, L. M.,
Therapeutic perspectives of in vivo cell elect ropermeabili-
zation. Bioelectrochemistry, 2001. 53: p. 1-10 (Mir 2001).
For EGT, permeabilization conditions are optimal when
eight square-wave pulses 20 ms in duration are delivered at
a frequency of 1 Hz, which constitutes a field of around 90
V/cm. Mir 2001. To maintain its non-thermal benefits, the
pulse parameters for IRE procedures are restricted to those
that minimize any associated Joule heating. Davalos, R. V.
and B. Rubinsky, Temperature considerations during irre-
versible electroporation. International Journal of Heat and
Mass Transfer, 2008. 51(23-24): p. 5617-5622. However, a
similar field strength and duration to those required for ECT
can induce IRE when the number of pulses is raised above
the traditional 8 pulses to 90 pulses, and the temperature of
the tissue remains below 50° C. Rubinsky, J., G. Onik, P.
Mikus, and B. Rubinsky, Optimal Parameters for the
Destruction of Prostate Cancer Using Ilrreversible Elec-
troporation. Journal of Urology, 2008. 180(6): p. 2668-
2674.

In addition to being bipolar, the pulses used according to
methods of the invention can have a duration of single
polarity (~1 ps) that is two orders of magnitude less than the
duration of a conventional electroporation pulse (~100 us)
and an amplitude that is one order of magnitude less than
supraporation protocols with nanosecond pulsed electric
field (nsPEF). Supraporation involves pulses with a duration
ranging from 1-100 ns and an amplitude ranging from
10-100 kV/cm. These electric fields are capable of causing
electroporation within the membranes of intracellular organ-
elles. Vernier, P. T., Y. H. Sun, and M. A. Gundersen,
Nanoelectropulse-driven membrane perturbation and small
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molecule permeabilization. Bmc Cell Biology, 2006. 7.
When the pulse length is shorter than the charging time of
the plasma membrane, the field can penetrate the plasma
membrane to reach the cell interior. Beebe, S. J., P. M. Fox,
L. J. Rec, L. K. Willis, and K. H. Schoenbach, Nanosecond,
high-intensity pulsed electric fields induce apoptosis in
human cells. FASEB 1, 2003. 17(9): p. 1493-5. Because
organelles are smaller in diameter than cells, the amplitude
required to raise the TMP on organelles up to ~1 V is greater
than that in ECT and IRE procedures. However, due to the
ultra-short nature of the pulses, the accompanying Joule
heating is still negligible. Schoenbach, K. H., S. J. Beebe,
and E. S. Buescher, Intracellular effect of ultrashort elec-
trical pulses. Bioelectromagnetics, 2001. 22(6): p. 440-8.
While immediate necrosis is suspected as the primary
mechanism of cell death following IRE, apoptosis triggered
by DNA fragmentation and the release of calcium from
intracellular stores occurs in cells exposed to sufficiently
high nsPEFs. Beebe, S. J., J. White, P. F. Blackmore, Y. P.
Deng, K. Somers, and K. H. Schoenbach, Diverse effects of
nanosecond pulsed electric fields on cells and tissues. DNA
and Cell Biology, 2003. 22(12): p. 785-796.

In vivo experiments on supraporation have shown that the
ultra-short, unipolar pulses do not cause stimulation of
excitable tissue, such as muscle and nerves. Long, G., P. K.
Shires, D. Plescia, S. J. Beebe, J. F. Kolb, and K. H.
Schoenbach, Targeted Tissue Ablation With Nanosecond
Pulses. leee Transactions on Biomedical Engineering, 2011.
58(8). This is a consequence of the pulses being below the
strength-duration threshold determined by Rogers et al.
Rogers, W. R., J. H. Merritt, J. A. Comeaux, C. T. Kuhnel,
D. F. Moreland, D. G. Teltschik, J. H. Lucas, and M. R.
Murphy, Strength-duration curve for an electrically excit-
able tissue extended down to near 1nanosecond. leee Trans-
actions on Plasma Science, 2004. 32(4): p. 1587-1599. As
seen in FIG. 6, for IRE pulses, the electric field threshold for
stimulation is between 1-10 V/em. The present invention
describes pulses where the duration of single polarity is as
low as 100 ns. At this duration, the electric field threshold for
stimulation increases to 1000 V/cm, which is above the
amplitude required for reversible electroporation and on the
order of the amplitude for IRE.

In addition to the duration of single polarity being
reduced, the fact that the inventive waveforms are inherently
bipolar offers an additional benefit in terms of the stimula-
tion of excitable tissue. As shown in FIG. 7, biphasic
waveforms have a higher threshold current for inducing
nerve stimulation. Reilly, J. P., V. T. Freeman, and W. D.
Larkin, Sensory Effects of Tramsient Electrical-Stimula-
tion—Evaluation with a Neuroelectric Model. IEEE Trans
Biomed Eng, 1985. 32(12): p. 1001-1011. Further, the
threshold increases exponentially as the duration of single
polarity is decreased. While the mechanism of this phenom-
enon is unknown, it is thought that the reversal in polarity
prevents an action potential from being generated by limit-
ing the flow of sodium ions down their concentration
gradient. This has been shown to translate to a reduced
muscle twitch force during bipolar functional electrical
stimulation as opposed to monopolar. Vandenhonert, C. and
J. T. Mortimer, Response of the Myelinated Nerve-Fiber to
Short Duration Biphasic Stimulating Currents. Annals of
Biomedical Engineering, 1979.7(2): p. 117-125.

The inventors have shown that bipolar waveforms can
induce IRE at center frequencies high enough to eliminate
muscle contraction completely. This procedure is termed
high-frequency IRE (H-FIRE). Overall, the results indicate
that H-FIRE can produce more predictable treatment out-
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comes, reduce the potential for thermal damage, and obviate
the need for (or reduce the necessity of) neuroparalytic
agents delivered prior to or during treatment.

The following examples show that bursts of bipolar,
nanosecond pulses can maintain a critical TMP beneath
epithelial layers, while minimizing Joule heating. This has to
do with the ability of high-frequency waveforms to achieve
a macroscopically homogeneous field distribution in a het-
erogeneous system. At high-frequencies, tissues with a low
passive DC conductivity become more conductive. Addi-
tionally, it is proven that high-frequency IRE (H-FIRE) can
be applied to non-thermally ablate tissue while eliminating
muscle contractions seen in conventional IRE protocols with
longer duration unipolar pulses. These results have impli-
cations not only for skin, brain, and liver as presented here,
but for other tissues, such as bone, breast, pancreas, kidney,
and lung. These examples should not be considered as
limiting the invention in any way.

As a general background to the examples, it is noted that
the inventors and their colleagues have successfully dem-
onstrated that finite element models (FEMs) can accurately
predict treatment outcomes of pulsed electric field therapies
for cancer treatment. See Edd, J. F. and R. V. Davalos,
Mathematical modeling of irreversible electroporation for
treatment planning. Technol Cancer Res Treat, 2007. 6: p.
275-286; and Edd, J. F., L. Horowitz, R. V. Davalos, L.. M.
Mir, and B. Rubinsky, In vivo results of a new focal tissue
ablation technique: irreversible electroporation . IEEE Trans
Biomed Eng, 2006. 53(7): p. 1409-15.

EXAMPLE 1

High-Frequency Electroporation Results in More
Uniform and Predictable Treatment Outcomes in
Heterogeneous Tissues

A 2D axisymmetric FEM representative of a cylindrical
section of non-infiltrated fat encapsulated by dry skin was
simulated using COMSOL 3.5a (Burlington, Mass.). The
electric potential distribution within the tissue was obtained
by transiently solving:

v @ @)
-V (aV D) — g5,V (T] =0

where @ is the electric potential and o and €, are the
conductivity and relative permittivity of each tissue layer,
respectively, which depends on frequency (Table 1). Equa-
tion (7) is obtained from Maxwell’s equations assuming no
external current density (J=oE), no remnant displacement
(D=&,&,E), and the quasi-static approximation. This
approximation implies a negligible coupling between the
electric and magnetic fields (VxE=0), which allows for the
expression of electric field only in terms of electric potential:

E=-V® ®)

Dielectric properties of the bulk tissue were chosen from
data generated by Gabriel et al. (see Gabriel, S., R. W. Lau,
and C. Gabriel, The dielectric properties of biological tis-
sues 0.2. Measurements in the frequency range 10 Hz to 20
GHz. Physics in Medicine and Biology, 1996. 41(11): p.
2251-2269) available at (http:/niremf.ifac.cor.it/docs/di-
electric’home.html). The data was interpolated in Math-
ematica 7 (Wolfram Research, Inc.) in order to estimate the
dielectric properties at the desired frequencies. Dielectric
properties of the electrode were chosen to be stainless steel,
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as incorporated in the Comsol material library. All electrical
boundary conditions are shown in FIGS. 8A-B, which
provides in FIG. 8A, a meshed geometry of the FEM with
boundary settings. The mesh consists of 3028 elements and
was refined until there was <0.1% change in the magnitude
of the electric field at the center of the tissue. FIG. 8B
provides a schematic diagram of the geometry with dimen-
sions. The box represents an expanded view of the tissue that
describes the link between the macroscopic electric field (E)
and the microscopic analysis of TMP. Adjacent cells are
drawn with dashed lines, indicating their role was ignored in
calculating TMP.

Because rectangular waveforms are comprised of com-
ponents with various frequencies and amplitudes, tissue
properties at frequencies associated with the center fre-
quency, defined as the inverse of twice the duration of single
polarity, are chosen. Intuitively, the duration of single polar-
ity defines the frequency at which the current changes
direction in the tissue. The pulses were constructed by
multiplying the applied voltage by a function consisting of
two smoothed Heaviside functions with a continuous second
derivative and a tolerance of 5 ns (rise and fall times). The
quasi-static assumption is confirmed based on the fact that
the primary frequency of the pulses is lower than 200 MHz
(rise and fall times), which corresponds to a wavelength that
is greater than the longest dimension in the geometry. Chen,
M. T, C. Jiang, P. T. Vernier, Y. H. Wu, and M. A.
Gundersen, Tiwvo-dimensional nanosecond electric field map-
ping based on cell electropermeabilization. PMC Biophys,
2009. 2(1): p. 9. The inclusion of a permittivity term in (1)
differs from previous, simplified models (see Edd, J. F. and
R. V. Davalos, Mathematical Modeling of irreversible Elec-
troporation for treatment planning. Technology in Cancer
Research & Treatment, 2007. 6(4): p. 275-286; and Neal, R.
E. and R. V. Davalos, The Feasibility of Irreversible Elec-
troporation for the Treatment of Breast Cancer and Other
Heterogeneous Systems. Annals of Biomedical Engineering,
2009. 37(12): p. 2615-2625), and accounts for reactive
component of tissue to time dependent pulsing, which is
required for obtaining accurate potential distributions in
heterogeneous models. Yousif, N., R. Bayford, and X. Liu,
The Influence of Reactivity of the Electrode-Brain Interface
on the Crossing Electric Current in Therapeutic Deep Brain
Stimulation. Neuroscience, 2008. 156(3): p. 597-606.

FIGS. 9A-D show the electric field distribution at the end
of'a 2 us burst with various frequencies given in Table 1. In
each case, the maximum applied voltage was set to 2600 V
(peak) in order to set up a voltage to distance ratio of 2000
V/em between the electrodes (1.3 cm spacing). From the
surface contour map, as frequency is increased, the electric
field in the fat rises while the field in the skin drops. This
trend extends to the point that at 2 MHz the field in the skin
is lower than the fat, which is a direct result of the tissue
dielectric properties at that frequency (greater conductivity
and permittivity of skin as compared to fat). Therefore,
high-frequency fields, or pulses with shorter duration, are
better suited to penetrate epithelial layers, such as the skin,
and reach underlying tissue.

EXAMPLE 2

High-Frequency Electroporation Results in
Homogeneous Energy Deposition and Reduces the
Potential for Thermal Damage in Low Passive
Conductivity Tissue

The temperature distribution in the model described in
EXAMPLE 1 was obtained by transiently solving a modified
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version of the Pennes bioheat equation (see Pennes, H. H.,
Analysis of tissue and arterial blood temperatures in the
resting human forearm. ] Appl Physiol, 1948. 1(2): p.
93-122) with the inclusion of a Joule heating term:

L ©

R =V - kV D+ ppwpCp(Tp = T) + O + | - E|

where T is the tissue temperature, T, is the blood tem-
perature, k is the thermal conductivity of the tissue, C and C,
are the tissue and blood specific heat, respectively, p and p,,
are the tissue and blood density, respectively, Q,, is the
metabolic heat source term, w, is the blood perfusion coef-
ficient, and |J-El is the Joule heating term. All thermal tissue
properties are given in Table 3. Fiala, D., K. J. Lomas, and
M. Stohrer, A computer model of human thermoregulation
for a wide range of environmental conditions: the passive
system. Journal of Applied Physiology, 1999. 87(5): p.
1957-1972.

TABLE 3
Thermal tissue properties of various tissues.
Tissue

Property Blood Skin Fat

p [kg/m?] 1069 1085 850

C [J/(KglIK)] 3650 3680 2300

k [W/(m[IK)] — 047 0.16
o [Us] — 1.1 0.0036
Q,, [kg/m?] — 368 58

Due to the presence of different tissue layers and the high
frequencies under consideration (250 kHz-2 MHz), dis-
placement currents are considered along with conduction
currents in the formulation of Joule heating:

JE (10)
J=Jp+J¢ =£0£rE +0E

where J is the total current density, J,, is the displacement
current density, and J . is the conduction current density. In
order to ensure that negative current components due to
polarity changes add to the total current in the tissue, the
absolute value of the resistive heating term was taken prior
to temperature calculations. It was assumed that all subdo-
mains were initially at physiologic temperature (T,=310.15
K). The boundaries between the electrode-skin interface and
the skin-fat interface were treated as continuous (n-(k, VT, -
k,VT,)=0), the centerline was defined as axial symmetry
(r=0), and the remaining boundaries were thermally insu-
lated (n-(kVT)=0) for conservative temperature estimates.
Temperature profiles were investigated along the centerline
(r=0 mm) in the middle of the fat (z=0 mm) and skin (z=5.75
mm) layers. Data was imported into Mathematica, and a
moving average with a period of 100 ns was taken to smooth
the plots. Additionally, the data was fit with a linear trendline
in order to extrapolate to longer burst widths and predict the
onset of thermal damage.

Temperature changes predicted by the FEM at the center
of the skin and fat are shown in FIGS. 10A-B, which
provides temperature changes predicted by the FEM at the
center of the skin (FIG. 10A) and fat (FIG. 10B) for
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frequencies of 250 kHz (- -), 500 kHz ( - - - ), 1 MHz
(...),and 2 MHz (-). Equations represent a linear fit to the
data. In this case, a burst width of 4 ps was simulated in
order to capture the trends in temperature development.
Polarity of the 2 ps pulse (250 kHz) was switched between
pulses to maintain consistency with the other waveforms
that are inherently bipolar. With respect to the skin, as the
frequency of the applied field increases, the temperature
rises at a slower rate. This is a consequence of the fact that
the electric field within the skin also decreases with increas-
ing frequency. In the case of the fat, the temperature rises at
a faster rate when the frequency of the applied field is
increased. At first glance, this seems to be detrimental,
however, it is merely an indication that energy is preferen-
tially being deposited more uniformly into the fat at higher
frequencies. Again, this can be correlated to the electric field
profile. In both tissues, the sharp rises in temperature are due
to the spikes in displacement current that occur at the onset
and offset of each pulse (data not shown). The total tem-
perature increase in all cases is less than 0.003 K for a burst
width of 4 ps. As explained in the discussion, even for bursts
of longer widths, the temperature increase is not enough to
promote thermal damage.

The onset of protein denaturation and loss of cell structure
occurs above 318.15 K (see Bilchik, A. J., T. F. Wood, and
D. P. Allegra, Radiofrequency ablation of unresectable
hepatic malignancies: Lessons learned. Oncologist, 2001.
6(1): p. 24-33), which correlates to an increase in tempera-
ture of 8 K above physiological temperature. Using this
information, the maximum energy delivery period (number
of pulses multiplied by pulse duration) can be calculated for
an amplitude of 2000 V/cm at each of the frequencies
investigated using the trendlines generated by the FEM data
(FIGS. 9A-D). In the skin layer, heating is reduced by
increasing the frequency of the applied field. This shows that
the potential for thermal damage in the skin is reduced when
the frequency of the applied field is increased. At higher
frequencies, the energy is preferentially deposited in the fat
layer. For 2 MHz, the total energy delivery period required
to cause an 8 K increase in temperature is 12 ms. An
example treatment plan can include 12, 1 ms pulses sepa-
rated by a delay of 1 s. If the frequency is reduced to 500
kHz, which shows the greatest electroporation efficiency
(Table 4, see EXAMPLE 3), the allowable energy delivery
period increases to 16 ms, which would permit the delivery
of an additional 4, 1 ms pulses before the onset of thermal
damage.

TABLE 4

Various exemplary treatment protocols.

Frequency Time (us), % of Pulse,
(pulse duration) ITMP| > 0.5V ITMP| > 0.5V
250 kHz (2 ps) 1.2 60

500 kHz (1 ps (x2)) 1.9 95

1 MHz (500 ns (x4)) 1.3 65

2 MHz (250 ns (x8)) 0.1 5

The restrictions could be increased if less conservative
estimates are obtained that account for heat dissipation
between pulses and heat convection at the tissue surface.
Lackovic, 1., R. Magjarevic, and D. Miklavcic, Three-
dimensional Finite-element Analysis of Joule Heating in
Electrochemotherapy and in vivo Gene Electrotransfer. leee
Transactions on Dielectrics and Electrical Insulation, 2009.
16(5): p. 1338-1347. These projected protocols represent a
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maximum, and it is likely that the desired effects will be
induced at a significantly lower energy. See Belehradek, J.,
S. Orlowski, L. H. Ramirez, G. Pron, B. Poddevin, and L. M.
Mir, Electropermeabilization of Cells in Tissues Assessed by
the Qualitative and Quantitative Electroloading of Bleomy-
cin. Biochimica Et Biophysica Acta-Biomembranes, 1994.
1190(1): p. 155-163; and Garcia, P. A., J. H. Rossmeisl, R.
E. Neal, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J.
Robertson, and R. V. Davalos, Intracranial Nonthermal
Irreversible Electroporation: In Vivo Analysis. Journal of
Membrane Biology, 2010. 236(1): p. 127-136.

EXAMPLE 3

High-Frequency Electroporation can Overcome
Shielding Effects of Low Passive Conductivity
Tissues and Induce Electroporation in Underlying
Layers

The analytical model for TMP described in this specifi-
cation was utilized to investigate electroporation in a hypo-
thetical cell located along the centerline (r=0 mm) in the
middle of the fat (z=0) and skin (z=5.75 mm) layers of the
FEM described in EXAMPLE 1. The equations for TMP are
derived under the assumption that there is no influence on
the microscopic electric field from neighboring cells. There-
fore, the macroscopic electric field in the bulk tissue pre-
dicted by the FEM dictates the microscopic electric field
experienced by the cell. The vertical z-component of the
electric field was imported from the specific locations within
FEM into Mathematica to account for polarity changes. The
radial r-component was neglected due to the fact that it never
surpassed 3 V/cm as current traveled primarily in the z-di-
rection. Non-uniform electric field data was fit with a series
of step functions (50 ns duration), such that the Laplace
transform of the field could be performed and the solution
for TMP could be obtained in the frequency domain as the
summation of individual steps. The inverse Laplace trans-
form of the data was taken to obtain the complete time
courses. Measurements were taken at the pole (6=0) to
depict the maximum induced TMP around the cell.

With respect to the skin, as the frequency of the applied
field increases, the maximum oscillation amplitude of the
TMP decreases, as shown in FIGS. 11A-B. This occurs for
two reasons. First, as seen in FIGS. 8A-B, the electric field
in the skin decreases with increasing frequency. Second, as
seen in FIG. 5, even with constant field amplitude, the TMP
decreases with increasing frequency, because the time dur-
ing which the membrane has to charge before the polarity
switches is less at higher frequencies. In the case of the fat,
the behavior is slightly more complex. At lower frequencies,
a majority of the voltage drop occurs across the skin as
demonstrated in FIGS. 9A-D, resulting in a reduced electric
field in the fat. This shielding effect is best shown in FIGS.
10A-B along the 250 kHz trace. According to FIG. 5, at 250
kHz, the maximum TMP should be reached. However, due
to the shielding effect from the skin, a reduction in the TMP
prior to the polarity change is seen. This reduction in TMP
can be alleviated by increasing the frequency of the applied
field. However, the tradeoff between increased frequency
and reduced TMP is still evident at a frequency of 2 MHz
(FIGS. 11A-B).

As mentioned, there is a balance between employing
pulses that are delivered on a short enough timescale to flow
through epithelial cells but are long enough to induce
electroporation in underlying cells. The time constant of 345
ns, predicted by the analytical model for TMP, falls between
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the 2 MHz (250 ns pulse duration) and 1 MHz (500 ns pulse
duration) bursts. Further, the 500 kHz burst (1 ps pulse
duration) is close to the time it takes the TMP to reach steady
state. Table 4 summarizes the results based on the time that
the TMP on a hypothetical cell at the center of the fat layer
is above 0.5 V. This amplitude was chosen such that even the
highest frequency burst was above the set voltage level for
a certain amount of time. The results would hold if the
applied field was doubled and the voltage level was set to the
1 V threshold for pore formation, due to the linear depen-
dence of TMP on the electric field. Based on this criterion,
a frequency of 500 kHz is best suited to treat cells in the fat
layer, followed by 1 MHz and 250 kHz. As frequency is
increased, the dielectric properties and electric field distri-
bution in the skin and fat become more macroscopically
homogeneous, but above 1 MHz, the pulse duration is not
adequate for the cell to charge.

EXAMPLE 4

System for Implementing High-Frequency, Bipolar
Pulses for Tissue Electroporation

The electronic drive system for delivering bipolar elec-
troporation signals is schematically depicted in FIG. 12. The
system relies upon both commercially available components
and circuits built by the inventors. An arbitrary function
generator (Tektronix AFG 3011) is programmed to output a
tri-state square waveform. The AFG 3011 is capable of
generating 20 V peak-to-peak into a 50 ohm load and has an
effective analog bandwidth of 8 MHz. The burst width,
interval between bursts, and total number of bursts is exter-
nally controlled by a microcontroller (Arduino
Duemilanove) through the general purpose input/output
(GPIO) pins. The output signal for a 1 MHz waveform with
a burst width of 10 ps and amplitude of 6 V peak is given
in FIG. 12. This signal is simultaneously fed through both
positive polarity and negative polarity high voltage MOS-
FET switches (IXYS Colorado HV 1000). The signal into
the negative polarity HV 1000 is inverted using an LM 7171
op amp with a slew rate of 4100 V/ps in order to properly
sequence the amplification of the positive and negative
polarity pulses without delay. The maximum output of each
HV 1000 is 17 A and +/-850 V into a 50 ohm load.
Additionally the pulse rise time is 10 ns or less. This results
in an amplification of the AFG 3011 trigger signal up to 1700
V peak-to-peak, which is capable of inducing electropora-
tion when the electrodes are spaced approximately 3 cm
apart or less. The input power to each HV 1000 is main-
tained by a high voltage sequencer (LabSmith HVS 448),
which can regulate voltage up to +/-3000 V and current up
to 100 mA. In order to increase current storage up to 17 A,
an external capacitor bank was included between the HVS
448 and HV 1000. The total capacitance of the bank can be
adjusted depending on the desired voltage and current output
or electrode spacing. This system allows for a flexible
treatment program that may be tailored to meet a patient’s
individual needs.

Other systems are available in the literature for generating
bipolar pulses, and the invention should not be limited to the
system described above. For example, De Vuyst et al. built
a generator around an NE555 timer configured as an astable
multivibrator capable of producing up to 50 kHz bipolar
pulses. De Vuyst, E., M. De Bock, E. Decrock, M. Van
Moorhem, C. Naus, C. Mabilde, and L. Leybaert, In situ
bipolar Electroporation for localized cell loading with
reporter dves and investigating gap junctional coupling.
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Biophysical Journal, 2008. 94(2): p. 469-479. However, the
frequency of the pulses administered according to embodi-
ments of the invention are an order of magnitude greater,
which is easily met by the bandwidth of the AFG 3011.
Additionally, the MOSFET switches provide an excellent
means to produce high-frequency pulses for high voltage
switching. However, MOSFETs are not the only semicon-
ductor devices that can be utilized to produce a pulse.
Bipolar Junction Transistors (BJTs), Insulated Gate Bipolar
Transistors (IGBTs), and Junction Field Effect Transistors
(JFETs) are examples of some of the semiconductor devices
that may be used to produce an output pulse.

EXAMPLE 5

Experimental Results of High-Frequency, Bipolar
Pulses for Electroporation of Cells

A chemical reaction technique was performed to fabricate
parallel silver electrodes on glass microscope slides with
100 uM spacing. Briefly, a commercially available mirroring
kit was used to deposit pure silver onto the microscope slides
(Angel Gilding Stained Glass Ltd, Oak Park, 111.). A negative
thin film photoresist (#146DFR-4, MG Chemicals, Surrey,
British Colombia, Canada) was laid on top of the slide and
passed through an office laminator (#4, HeatSeal H212,
General Binding Corporation, Lincolnshire, I11.). A photo-
mask printed at 20 k DPI on a transparent film (Output City,
Cad/Art Services Inc, Bandon, Oreg.) was placed ink side
down onto the photoresist, and slides were exposed to UV
light for 45 seconds. After exposure, the slides were placed
in a 200 mL bath containing a 10:1 DI water to negative
photo developer (#4170-500ML, MG Chemicals, Surrey,
British Colombia, Canada). The slides were placed in a
beaker containing DI water to stop the development process
and gently dried using pressurized air. Electrode structures
on the microscope slides were fabricated by removing all
silver not covered by the patterned photoresist. A two part
silver remover was included in the mirroring kit used to
deposit the silver. The photoresist was then removed by
placing the slide in a bath of acetone.

Microfluidic channels were fabricated using the patterned
photoresist on a microscope slide that had not undergone the
silvering process. Liquid phase polydimethylsiloxane
(PDMS) in a 10:1 ratio of monomers to curing agent
(Sylgrad 184, Dow Corning, USA) was degassed under
vacuum prior to being poured onto the photoresist master
and cured for 1 hour at 100° C. After removing the cured
PDMS from the mold, fluidic connections to the channels
were punched in the devices using 1.5 mm core borers
(Harris Uni-Core, Ted Pella Inc., Redding, Calif.). The
PDMS mold was then bonded over the glass slides contain-
ing the patterned electrodes by treating with air plasma for
2 minutes in a PDC-001 plasma cleaner (Harrick Plasma,
Ithaca, N.Y.).

High voltage electrical wires were taped to the glass slide
with exposed wire placed in direct contact with the electrical
pads. A drop of high purity silver paint (Structure Probe Inc.,
West Chester, Pa.) was placed on the pad and allowed to dry
for one hour creating a solid electrical connection. A drop of
5 minute epoxy (Devcon, Danvers, Mass.), used to secure
the electrical connections, was placed on top of each elec-
trode pad and allowed to cure for 24 hours. Pulses were
delivered across the electrodes as described in EXAMPLE 4
prior to the amplification stage. No amplification was
needed as the gap between the electrodes was only 100 pm.
Therefore, the output signal of a function generator (GFG-
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3015, GW Instek, Taipei, Taiwan) +/-10 V can be used to
generate an electric field capable of inducing electropora-
tion, as shown in FIGS. 13A-B.

Following culture in DMEM-F12 (supplemented with
10% FBS and 1% penicillin streptomycin) MDA-MB-231
cells were resuspended in a PBS solution 1:1 with Trypan
Blue (0.4%). Trypan Blue is a determinant of cell membrane
integrity, and stains electroporated cells blue, whereas non-
electroporated cells remain transparent. Cells at a concen-
tration of 10%/ml were injected into the microfluidic channel
using a syringe. The function generator was triggered by the
microcontroller to deliver 80, 50 kHz bursts with a width of
1 ms and an amplitude of 500 V/cm. Results shown in FIGS.
14A-B, which shows that 60% transfection efficiency was
obtained when starting with cells that are 92% viable. This
efficiency of reversible electroporation could be improved
by either increasing the number of pulses or the burst width.
Additionally, IRE could be performed by increasing the
applied voltage.

EXAMPLE 6

Alternate Waveforms for Performing
High-Frequency Electroporation

The analytical model for TMP described in the detailed
description of the invention was utilized to investigate
electroporation of a spherical cell subject to alternative
waveforms. As mentioned, the critical TMP (®_,) across the
plasma membrane required to induce IRE is approximately
1 V. Belehradek, J., S. Orlowski, L. H. Ramirez, G. Pron, B.
Poddevin, and L. M. Mir, Electropermeabilization of Cells
in Tissues Assessed by the Qualitative and Quantitative
Electroloading of Bleomycin. Biochimica Et Biophysica
Acta-Biomembranes, 1994. 1190(1): p. 155-163. This
threshold is illustrated in FIGS. 15A-C by the dashed,
horizontal line on the TMP profiles. Characteristic wave-
forms of IRE with unipolar pulses and high-frequency IRE
with the corresponding TMP development across the plasma
membrane (®,,,). All results are presented at the cell pole
(6=0) to show the maximum TMP around the cell. Further,
results are only shown for TMP across the plasma mem-
brane, as the TMP across the nuclear envelope never
approached the permeabilizing threshold. For an electric
field of 1500 V/em, results indicate that a unipolar pulse
(FIG. 15A), a 250 kHz bipolar burst (FIG. 15B), and 250
kHz bipolar burst that includes delays between the pulses
(FIG. 15C) are all capable of inducing IRE. However, the
time above the threshold TMP varies between the different
cases. The 1500 V/em unipolar pulse causes the TMP to rise
above the critical threshold for IRE (1 V, dashed line). The
1500 V/em bipolar burst without a delay and with a delay
causes the TMP to oscillate around the same critical thresh-
old. This is investigated further in FIG. 16 for center
frequencies of 0, 100, 250, 500, and 1000 kHz, with the O
kHz case representing the unipolar pulse, and electric fields
ot 1000 V/cm and 1500 V/em. FIG. 16 provides a compari-
son of time above the critical threshold (®_,) for IRE at
various center frequencies. The burst width of the bipolar
waveform that included delays was twice as long (40 ps) as
the corresponding burst with no delays in order to generate
an equivalent pulse on-time (20 ps). The amount of time that
the TMP was above the critical value was normalized by the
on-time and converted to a percentage. FIG. 16 illustrates
that, for a given frequency, as the electric field is increased
from 1000 V/em to 1500 V/em, the percentage of the burst
above the critical TMP also increases. At 250 kHz, IRE is
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possible during all waveforms, but at 500 kHz, only the
waveforms with amplitudes of 1500 V/cm are capable of
inducing IRE. As the center frequency of the burst increases,
the percentage of the burst above the critical TMP decreases.
However, with the inclusion of delays between the pulses,
this characteristic dispersion is shifted towards higher fre-
quencies. At 1 MHz, only the 1500 V/cm waveform with
delays can theoretically cause IRE.

The theoretical model of TMP suggests that IRE should
be possible up to 1 MHz for an electric field of 1500 V/em.
Including a delay between the positive and negative pulses
comprising the bipolar burst offers a therapeutic advantage
in addition to protecting the MOSFETs in the pulse genera-
tion system (see EXAMPLE 4) from ringing. By not forcing
a discharge of the TMP with an immediate reversal of
polarity, the cell is allowed to return to the resting TMP
according to its characteristic time constant. As a result, the
TMP is maintained above the critical voltage required for
IRE for a longer amount of time. This metric has been
recognized as a potential indicator of treatment outcomes in
electroporation based therapies with bipolar waveforms.
Garcia, P. A, J. H. Rossmeisl, R. E. Neal, T. L. Ellis, J. D.
Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos,
Intracranial Nonthermal Irreversible Electroporation: In
Vivo Analysis. Journal of Membrane Biology, 2010. 236(1):
p. 127-136.

Other potential waveforms for performing high-frequency
electroporation are shown in FIGS. 17A-C, which provide
characteristic waveforms of IRE with unipolar pulses and
high-frequency IRE with the corresponding TMP develop-
ment across the plasma membrane (®,,,). A unipolar pulse
with an amplitude of 1500 V/cm is shown for comparison
(FIG. 17A). A waveform without delays between polarity
reversals (FIG. 17B) can maintain a positive TMP through-
out the entire treatment if the duration of positive polarity is
tuned to be slightly longer than the duration of negative
polarity. Similarly, for a waveform that includes delays
(FIG. 17C), a train of positive ultra-short pulses could be
used to gradually increase the TMP up to the critical
permeabilizing threshold, and a single ultra-short pulse of
negative polarity could follow the train without causing the
TMP to go negative. In both examples, the ultra-short
negative going pulse is designed to maintain the predicted
benefits of high-frequency electroporation. Namely, it is
predicted that the negative going pulse will prevent action
potential generation and still permit a degree of capacitive
coupling across epithelial layers. FI1G. 18 is a chart showing
an exemplary output from an in vivo treatment of the brain
with high-frequency, bipolar pulses, where the snapshot is
taken within a single burst.

EXAMPLE 7

Experimental Results of High-Frequency IRE
(H-FIRE) of Brain Tissue

H-FIRE was performed using a custom pulse generator as
described in EXAMPLE 4 with minor modifications. An
unregulated DC power supply was constructed to replace the
both the high voltage sequencer and external capacitor in
order to maintain a sufficient level of charge to deliver 20 A
over a 100 us burst. A center tapped 400 VA transformer
(AS-4T320, Antek, Inc., North Arlington, N.J., USA) was
rectified and smoothed by a capacitor bank to provide
positive and negative power rails to the HV1000P and
HV1000N, respectively. The voltage rails were controlled
by adjusting the input voltage using a variable transformer,
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and the maximum output rating of the system was +/-450 V.
A delay equal to the duration of single polarity was included
between the pulses in order to protect the MOSFETs from
ringing. A unity gain inverting amplifier (AD844, Analog
Devices, Norwood, Mass., USA) was used to invert this
signal and appropriately trigger the negative pulse generator.
The outputs of the two monopolar pulse generators were
terminated into a 502 load in parallel with the electrodes.
This load was used to maintain appropriate pulse character-
istics and as a safety to ensure the system was never
triggered without an attached load. For comparison, the IRE
treatments were performed using the BITX ECM 830 elec-
troporation system (Harvard Apparatus, Holliston, Mass.,
USA).

All study procedures were conducted following Institu-
tional Animal Care and Use Committee approval and per-
formed in a GLP compliant facility. Four, Fischer 344 male
rats weighing 200-240 g were anesthetized by intraperito-
neal injection of 10 mg/kg xylazine and 60 mg/kg ketamine
hydrochloride, and a surgical plane of anesthesia was
assessed by loss of the tail pinch reflex. To monitor muscle
contractions, a 3-axis accelerometer breakout board
(ADXL335, Adafruit Industries, New York, N.Y., USA)
with a sensing range of £3 g’s was sutured to the dorsum of
each rat in the interscapular region at the cervicothoracic
junction using 5-0 monocryl suture. Low-pass filter capaci-
tors (0.1 uF) were included at the x, y, and z outputs of the
accelerometer for noise reduction. The hair of the skull was
clipped and aseptically prepared using povidone-iodine and
alcohol solutions. Anesthetized rats were placed in a small
animal stereotactic head frame (Model 1350M, David Kopf
Instruments, Tungisten, Calif., USA). A routine lateral ros-
trotentorial surgical approach to the skull was made, and 6
mm by 3 mm rectangular parieto-occipital craniectomy
defects were created in the right and left aspects of the skull
of each rat using a high-speed electric drill. Custom elec-
trodes were inserted into the center of the forelimb area of
the sensorimotor cortex of each rat (coordinates relative to
Bregma: 1 mm anterior, 2.5 mm lateral, 2 mm dorsoventral)
and advanced to a depth of 2 mm beneath the surface of the
exposed dura. The electrodes were fashioned by blunting
stainless steel acupuncture needles (0.45 mm diameter,
Kingli Medical Appliance Co., Wuxi, China) with high
grade sandpaper. Exposure length was set to 1 mm by
insulating the electrodes with miniature polyimide tubing
(25 AWG, Small Parts, Seattle, Wash., USA), and the
edge-to-edge electrode spacing was set to 1 mm by molding
the electrodes in liquid phase polydimethylsiloxane (PDMS)
cured in a 10:1 ratio with Sylgard 184 (Dow Corning Corp.,
Midland, Mich., USA) at 150° C. for 30 min.

Pulse parameters were chosen based on the results from
the analytical and numerical models to ensure the greatest
potential for non-thermal tissue ablation. Following elec-
trode insertion, pulses were applied to the right and left
cerebral hemispheres, resulting in two treatments per rat
(Table 5).

TABLE 5
Pulse parameters of various treatment protocols.
Rat Frequency Voltage

Number Treatment Hemisphere (kHz) V)
1 IRE Left — 100
H-FIRE Right 250 100

2 IRE Left — 200
H-FIRE Right 250 200
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TABLE 5-continued

Pulse parameters of various treatment protocols.

Rat Frequency Voltage
Number Treatment Hemisphere (kHz) V)
3 H-FIRE Left 250 300
H-FIRE Right 250 400
4 IRE Left — 50
H-FIRE Right 500 400

H-FIRE experiments were performed using 180 bursts
with a pulse on-time of 200 ps within each burst, and bursts
were delivered at a rate of one per second. In Rat #1 and Rat
#2, H-FIRE was applied at voltages of 100 V and 200 V,
respectively, to the right hemisphere with a center frequency
of 250 kHz (duration of single polarity equal to two micro-
seconds). The left hemisphere of Rat #1 and Rat #2 were
treated with 180 IRE pulses (200 ps duration) of equivalent
energy. In Rat #3, H-FIRE was applied to the left and right
hemispheres at voltages of 300 V and 400 V, respectively,
with a frequency of 250 kHz. In Rat #4, H-FIRE was applied
at a voltage of 400 V to the right hemisphere with a
frequency of 500 kHz (duration of single polarity equal to
one microsecond). The left hemisphere of Rat #4 was treated
with 90 IRE pulses (200 ps) and an applied voltage of 50V.
This lower energy scenario was designed to compare
H-FIRE treatment outcomes to traditional IRE protocols in
the brain. Kotnik, T. and D. Miklavcic, Theoretical evalu-
ation of voltage inducement on internal membranes of
biological cells exposed to electric fields. Biophysical Jour-
nal, 2006. 90(2): p. 480-491.

Immediately following treatment, Rats #3 and #4 were
subjected to MRI examinations of the brain while under
general anesthesia. The MRI was performed with a 0.2 T
MRI scanner using a dual phased array hand/wrist coil for
RF signal transmission and reception. Sequence acquisition
parameters were as follows: T1-weighted images were
acquired using spin echo pulse sequence (TR=200 ms,
TE=16 ms, FOV=6 cm, matrix=256x196, slice thickness=2
mm), and T2-weighted images were acquired using a gra-
dient echo pulse sequence (TR=3000 ms, TE=90 ms,
FOV=6 cm, matrix=256x196, slice thickness=3 mm)
T1-weigthed images were obtained following intraperito-
neal injection of 0.1 mmol/kg of gadopentetate dimeglumine
(Magnevist, Berlex Laboratories, NJ, USA). In all rats,
humane euthanasia was performed by cervical dislocation
approximately 1 hr post-treatment, and the brain was
removed and fixed intact in 10% neutral buffered formalin.
Following fixation for 48 hours, an adult rat brain matrix
slicer (Zivic Instruments, Pittsburgh, Pa.) was used to obtain
contiguous 2 mm coronal brain sections from each animal
Brain and sections were embedded routinely in paraffin,
sectioned at 5 pum, and stained with hematoxylin and eosin
(H&E).

Treatments evaluated in this study produced ablative
lesions in brain tissue, as evaluated with MRI examinations
(FIGS. 21A-F) and pathologic preparations (FIGS. 20A-D).
In Rats #3 and #4, the MRI characteristics of both H-FIRE
and IRE lesions were similar. The MRI appearance of
lesions in rat brain appeared as focal, ovoid to elliptical, T1
iso- to hypo-intense, uniformly and markedly contrast
enhanced (FIGS. 21A, B, C, D, F) and T2 hyper-intense
(FIG. 21E). In all panels, lesions appear as focal hyper-
intense regions (white) compared to adjacent untreated
cerebrocortical tissue (gray). Top Panels (A-C) obtained
from Rat #3, in which both the left and right cerebral
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hemispheres were treated with high-frequency waveforms at
300 V/250 kHz and 400 V/250 kHz, respectively. Bottom
Panels (D-F), Rat #4, which underwent high-frequency,
bipolar pulses in the right cerebrum at 400 V/500 kHz, and
conventional IRE with unipolar pulses at 50 V in the left
cerebrum. Panels A and D, post-gadolinium T1-weighted
MRI sequences in the axial plane. Panel B, post-gadolinium
T1-weighted MRI sequences in the right parasagittal plane.
Panels C and F, post-gadolinium T1-weighted MRI
sequences in the dorsal plane. Panel D, T2-weighted MRI
sequence in the transverse plane. In all panels, the right side
of the brain is on the left side of the panel.

All lesions were well demarcated from adjacent, normal
brain tissue and appeared similar in size. Compared to
untreated brain (FIGS. 20A and B), histopathologic exami-
nation of brain sections from all treatments demonstrated
clear areas of ablation indicated by pallor of the treated
tissue that was sharply delineated from adjacent normal
brain (FIG. 20C). H-FIRE and IRE lesions were predomi-
nantly characterized by areas of complete obliteration of
cerebrocortical architecture by an eosinophilic, vacuolated
amorphous debris (FIGS. 20C and D). In Rat #1, the H-FIRE
ablation zone was confined to regions of elevated electric
field surrounding the electrodes, whereas all other pulsing
protocols resulted in ablation zones spanning the entire
region between the electrodes. Cavitary cerebrocortical
defects were induced with H-FIRE in Rat #1 and IRE in Rat
#4. Variably sized regions of intraparenchymal hemorrhage
were most pronounced immediately adjacent to and within
electrode insertion tracks. The morphology of remnant neu-
ronal and glial elements within H-FIRE ablated regions
demonstrated features of both apoptosis and necrosis,
including shrunken and hypereosinophilic cytoplasm,
nuclear chromatin condensation, and nuclear pyknosis and
karyolysis (FIG. 20D). Free glial and neuronal nuclei in
various states of degeneration were scattered throughout
ablation zones. Inflammation was not a significant feature of
IRE or H-FIRE lesions at the time point brains were exam-
ined.

EXAMPLE 8

Elimination of Muscle Contractions During
High-Frequency IRE (H-FIRE) of Brain Tissue

Muscle contractions were monitored throughout the pro-
cedure described in EXAMPLE 7 with the accelerometer
located in the interscapular region at the cervicothoracic
junction. All IRE pulsing protocols were associated with
macroscopic muscular contractions of the cervicothoracic
junction, which were also palpable to the neurosurgeon,
while no visual or tactile evidence of muscular contraction
was seen during any of the H-FIRE bursts. These results
were quantitatively confirmed by the data recordings from
the accelerometer (FIGS. 22A-D). Peak acceleration was
determined during the first 90 bursts of the highest energy
H-FIRE protocol (400 V/250 kHz) and the first 90 pulses of
each IRE protocol (50 V, 100V, 200 V). A one-way ANOVA
was used to investigate the effects of each protocol on the
ranks of peak acceleration at the cervicothoracic junction. In
the event of a significant main effect, pairwise comparisons
were completed using Tukey’s Honestly Significant Differ-
ence (HSD). All statistical analyses were conducted using
JMP 7 (Cary, N.C., USA) with a significance level of
p<0.05. Results indicate that, even in the highest energy
H-FIRE protocol, there are no detectable peaks in accelera-
tion above the inherent noise of the system. However, in all

10

15

20

25

30

35

40

45

50

55

60

65

28

IRE protocols, peaks in acceleration associated with each
pulse are detectable above the baseline noise. Further, pair-
wise comparisons between the various IRE protocols indi-
cated that the mean peak acceleration during each treatment
was energy dependent. Specifically, the mean peak accel-
eration decreased as the applied voltage decreased (FIG. 23).

EXAMPLE 9

Experimental Results of High-Frequency IRE
(H-FIRE) of Liver Tissue

All study procedures were conducted following Institu-
tional Animal Care and Use Committee approval and per-
formed in a GLP compliant facility. Two, Fischer 344 male
rats weighing 200-240 g were anesthetized by intraperito-
neal injection of 10 mg/kg xylazine and 60 mg/kg ketamine
hydrochloride, and a surgical plane of anesthesia was
assessed by loss of the tail pinch reflex. A routine lapa-
rotomy surgical approach to the abdomen was made in order
to expose the liver. Custom electrodes were inserted into the
liver parenchyma and advanced to a depth of 2 mm beneath
the surface. The electrodes were fashioned from steel pins
(Dritz, 0.5 mm diameter), and the edge-to-edge electrode
spacing was set to 1 mm by inserting the electrodes in a
custom polycarbonate spacer.

In Rat #1, H-FIRE was applied at 1000 V/cm with 80
unipolar bursts at a center frequency of 2 MHz and, 50%
duty cycle, and 50 ps burst width. In Rat #2 IRE was applied
at an equivalent energy using 80 unipolar pulses with a
duration of 50 ps and amplitude of 1000 V/cm. In all rats,
humane euthanasia was performed by cervical dislocation
approximately 1 hr post-treatment, and the liver was
removed and fixed intact in 10% neutral buffered formalin.
Following fixation for 48 hours, 5 mm sections from each
animal were obtained and embedded routinely in paraffin,
sectioned at 5 pm, and stained with hematoxylin and eosin
(H&E).

Histologically, in both treatments, there is evidence of
necrosis and sinusoidal congestion (FIGS. 19A-B). Addi-
tionally, the lesions are well demarcated with cell scale
resolution between treated and untreated tissue. Both of
these features are common to IRE ablation of liver. No
evidence of muscle contraction was observed visually. These
results supplement those presented in EXAMPLE 7 and
confirm that H-FIRE ablation can be achieved in multiple
tissue types.

EXAMPLE 10

The Electric Field Distribution During
High-Frequency Electroporation can be
Approximated by the Laplace Equation

A 2D axisymmetric FEM representative of a slab of
non-infiltrated fat adjacent to dry skin was simulated using
COMSOL 4.2a (Burlington, Mass.). An energized and
grounded electrode were modeled as infinite fins (0.5 mm
diameter) separated 0.5 cm from the skin-fat interface, for a
total spacing of 1 cm. The electric potential distribution
within the tissue was obtained by transiently solving Equa-
tion 7 (see Example 1). Additionally, the homogeneous
solution was solved according to the Laplace equation:

—V(V®)=0 an

For the heterogeneous case, the dielectric properties of
various tissues were chosen from data generated by Gabriel
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et al. available at (http://niremf.ifac.cnr.it/docs/dielectric/
home.html). Gabriel, S., R. W. Lau, and C. Gabriel, Tke
dielectric properties of biological tissues 0.2. Measurements
in the frequency range 10 Hz to 20 GHz. Physics in
Medicine and Biology, 1996. 41(11): p. 2251-2269. The data
was interpolated in Mathematica 7 (Wolfram Research, Inc.)
in order to estimate the dielectric properties at 1 kHz and 1
MHz. For the homogeneous case, the electric field distribu-
tion is independent of the dielectric properties. The ener-
gized and grounded electrodes were subtracted from the skin
and fat subdomains, and treated purely as boundary condi-
tions at 1000 V and 0V, respectively.

FIGS. 24A and B show the electric field distribution
during a bipolar burst with the frequencies given in TABLE
6.

TABLE 6
Dielectric properties of skin and fat tissue at various frequencie
Tissue

Frequency Property Skin Fat

1 kHz o [S/m] 0.000180 0.0246
€, 1170 20800

1 MHz o [S/m] 0.0119 0.0267
€ 792 25

”

From the surface contour map, at 1 kHz, which is repre-
sentative of a 500 us traditional electroporation pulse, the
electric field is highly non-uniform. A majority of the
voltage drop occurs within the skin layer, and the fat layer
remains untreated. However, at 1 MHz, which is represen-
tative of a 500 ns high-frequency electroporation pulse, the
voltage drop is distributed more uniformly throughout the
entire domain. As a result, both the skin and fat layers can
be treated. Additionally, the electric field distribution at 1
MHz closely resembles that of the homogenous solution.
Therefore, knowledge of dielectric properties and intricate
geometrical arrangements of heterogeneous tissues can be
neglected during treatment planning for high-frequency
electroporation. This greatly reduces treatment planning
protocols and produces more predictable outcomes.

The present invention has been described with reference
to particular embodiments having various features. It will be
apparent to those skilled in the art that various modifications
and variations can be made in the practice of the present
invention without departing from the scope or spirit of the
invention. One skilled in the art will recognize that these
features may be used singularly or in any combination based
on the requirements and specifications of a given application
or design. Other embodiments of the invention will be
apparent to those skilled in the art from consideration of the
specification and practice of the invention. Where a range of
values is provided in this specification, each value between
the upper and lower limits of that range is also specifically
disclosed. The upper and lower limits of these smaller
ranges may independently be included or excluded in the
range as well. As used in this specification, the singular
forms “a,” “an,” and “the” include plural referents unless the
context clearly dictates otherwise. It is intended that the
specification and examples be considered as exemplary in
nature and that variations that do not depart from the essence
of the invention are intended to be within the scope of the
invention. Further, the references cited in this disclosure are
incorporated by reference herein in their entireties.
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The invention claimed is:

1. A method of ablating tissue cells by non-thermal
irreversible electroporation comprising:

positioning one or more electrodes near a target area

containing target tissue cells to be ablated;

applying a plurality of electrical pulses to the target area

through the positioned electrodes by applying pulses at
a frequency rate of 50 kHz or higher with each elec-
trical pulse having a pulse width of 10 microseconds or
less, so as to ablate the target tissue cells by non-
thermal irreversible electroporation.

2. The method of claim 1, wherein the step of applying
includes applying the plurality of electrical pulses at the
frequency rate of between 50 kHz and 2 MHz, inclusive.

3. The method of claim 1, wherein the step of applying
includes applying the plurality of electrical pulses at the
frequency rate of between 250 kHz and 2 MHz, inclusive.

4. The method of claim 1, wherein the step of positioning
includes non-invasively positioning the one or more elec-
trodes near the target area.

5. The method of claim 1, wherein the pulse width of a
single electrical pulse is at least 100 nanoseconds.

6. The method of claim 1, wherein the pulse width of a
single electrical pulse is in the range of 250 nanoseconds to
2 microseconds, inclusive.

7. The method of claim 1, wherein the step of applying
includes applying a plurality of bipolar electrical pulses.

8. The method of claim 1, wherein the step of applying
includes applying a plurality of bipolar bursts of electrical
pulses with multiple pulses in a single phase before a
polarity switch.

9. The method of claim 1, wherein the electrical pulses are
square, ramp, sinusoidal, exponential, or trapezoidal.

10. The method of claim 1, wherein the step of applying
includes applying a burst of electrical pulses which is
sufficient to cause a transmembrane potential (TMP) of the
target tissue cells to rise above a critical threshold (CT) for
inducing electroporation while a single electrical pulse in the
burst of electrical pulses is insufficient to cause the TMP of
the target tissue cells to rise above the CT.

11. The method of claim 1, wherein the step of applying
includes applying a plurality of electrical pulses wherein
each electrical pulse is sufficient to cause a transmembrane
potential (TMP) of the target tissue cells to rise above a
critical threshold (CT) for inducing electroporation.

12. The method of claim 1, wherein the step of applying
includes applying a burst of electrical pulses which is
sufficient to cause a transmembrane potential (TMP) of the
target tissue cells to rise above a critical threshold for
inducing irreversible electroporation (CTIRE) while a single
electrical pulse in the burst of electrical pulses is insufficient
to cause the TMP of the target tissue cells to rise above the
CTIRE.

13. The method of claim 12, wherein the CTIRE is about
1 Volt.

14. The method of claim 1, wherein the step of applying
includes applying a plurality of electrical pulses wherein
each electrical pulse is sufficient to cause a transmembrane
potential (TMP) of the target tissue cells to rise above a
critical threshold (CT) for inducing irreversible electropo-
ration.

15. The method of claim 1, wherein the step of applying
includes applying the electrical pulses at 2500 V/em or
lower.

16. The method of claim 1, wherein the step of applying
includes controlling voltage and pulse width of the electrical
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pulses to reduce tissue stimulation sufficiently to perform
tissue ablation without using general anesthesia.
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